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Abstract. Physiological signals have certain prominent characteristics that dis-
tinguish them from other types of physiological signals which are familiar to 
experts and assessed by inspection. The aim of this paper is to develop a com-
putational model that can distinguish electrocardiogram, galvanic skin response 
and blood pressure signals acquired from sensors as well as detect corrupted 
signals which can arise due to hardware problems including sensor malfunction. 
Our work also investigates the impact of the signal modeling for various time 
lengths and determines an optimal signal time length for classification. This 
provides a method for automatic detection of corrupted signals during signal da-
ta collection which can be incorporated as a support tool during real-time sensor 
data acquisition. 
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nals, time series data, signal modeling. 

1 Introduction 

Physiological signals are generated by the human body and have been analyzed to 
classify different states of a person including health condition detection [1-3] and 
affective state classification [4, 5] however little attention has been given to develop 
models for model free recognition of physiological signals and detection of corrupted 
signals. Filtering techniques have been utilized for artifact classification in physiolog-
ical signals such as EEG signals [6]. Our work is focused on computationally  
capturing the underlying properties that distinguish the nature of the different types of 
signals and separate the different types of signals. 

Artificial neural networks (ANNs), inspired by biological neural networks, have 
characteristics for learning patterns to classify input tuples into classes. It is made up 
of interconnected processors, known as artificial neurons, which are connected by 
weighted links that pass signals between neurons to learn relationships between tuples 
and output classes. In this work, we used feed-forward ANNs trained using backpro-
pagation to generate signal classification models. 

This paper presents the signal data that will be modeled using ANNs for classifica-
tion. The ANN models to model and classify physiological signals and corrupted 
signals using individual-independent models and models for a particular individual 
are proposed. We provide results of the ANNs on the data and analyses of the results. 



 Classification of Physiological Sensor Signals Using Artificial Neural Networks 505 

 

We also investigated how the length of the signal affects the performances of the 
ANNs for signal classification. The paper concludes by summarizing the work and 
suggests future work.  

2 Physiological Signal Sensor Data 

The physiological sensor signal data used for our models were obtained from the data 
set collected in [7]. Three different types of physiological signals are used in this 
work and they are electrocardiogram (ECG), blood pressure (BP) and galvanic skin 
response (GSR). Examples of the signals in the data set are shown in Fig. 1. 

 

     
(a)     (b) 

 
(c) 

Fig. 1. Sample physiological signals (a) ECG signal (b) GSR signal (c) BP signal 

The physiological signals modeled in this work are produced by different activities 
in the Autonomic Nervous System of the human body. An ECG signal captures elec-
trical activity produced by the impulse of ions flowing through cardiac muscles, 
which dissipates into the region around the heart with diminished amounts spreading 
around the surface of the body. The ECG waveform is characterized by the dominant 
QRS wave where the R is the peak of the wave. ECG signals can be used to determine 
cardiovascular fitness, and dynamic and cumulative load of a person [8]. 

A GSR signal provides a measurement of the flow of electricity through the skin  
of an individual. Variations in GSR have been found to reflect stress levels in  
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individuals while they played a competitive racing game [9]. In addition, cognitive 
load [10] and work performance [11], which can be seen as stressors [12, 13], have 
strong correlations with GSR. GSR waveforms may have consistent shapes in reac-
tion to stressors but are not usually periodic. 

A BP signal shows the amount of pressure exerted on the walls of blood vessels 
due to blood circulation. The signal shows variations of the pressure between a systol-
ic (maximum) and a diastolic (minimum) pressure. 

The physiological sensor signal data set was used to model the three types of sig-
nals spanning 15 minutes for 22 subjects. For the purpose of this work, the signals 
were sampled at 10 Hz and this captured the main properties of the physiological 
signals such as the QRS waveforms in the ECG signals and the systolic and diastolic 
pressures in the BP signals as shown in Fig. 1. There were 10 other subjects who had 
their signals recorded but at least one of their signals were corrupted by manual in-
spection. This data was used to develop modeling systems that recognized corrupted 
signals as well as the physiological signals. Further, the signals were normalized to 
minimize the impact of individual bias, offset and noise in the signals for modeling 
and to better capture the underlying properties of the signals such as the QRS wave-
form for ECG signals. 

3 Artificial Neural Network Signal Classifiers 

ANN models were developed to recognize the different physiological signals and 
corrupted signals. The ANNs differed in terms of the data modeled and the topology. 
They are described as follows: 

1. ANN-10s: the ANN modeled signals segmented in 10 seconds time segments 
and used data from all subjects for training and testing the model 

2. ANN-Ind-10s: the ANN modeled signals segmented in 10 seconds time seg-
ments and used data from a particular individual (i.e. one subject) for training 
and testing the model 

3. ANN-10s-Corrupt: the ANN modeled signals segmented in 10 seconds time 
segments and used data from all subjects and subjects who had corrupted sig-
nals for training and testing the model 

Similarly, ANN-5s, ANN-Ind-5s, ANN-5s-Corrupt, ANN-1s, ANN-Ind-1s, 
ANN-1s-Corrupt, ANN-0.5s, ANN-Ind-0.5s and ANN-0.5s-Corrupt were devel-
oped for signals segmented in 5 seconds, 1 second and 0.5 seconds time segments. 
The ANNs that modeled corrupted signals in addition to the physiological signals had 
four output neurons, which was one more neuron than the ANNs that did not model 
the corrupted signals. 

Each type of ANN defined above had three different topologies for the hidden layers: 

1. One hidden layer with 7 neurons 
2. Two hidden layers with 7 neurons in the first hidden layer and 5 neurons in the 

second hidden layer 
3. Three hidden layers with 7 neurons in the first hidden layer, 5 neurons in the 

second hidden layer and 3 neurons in the third hidden layer 



 Classification of Physiological Sensor Signals Using Artificial Neural Networks 507 

 

Additionally, ANN models were developed that took two types of physiological 
signals as input: 

1. ANN-ECG-GSR: the ANN was modeled to recognize ECG and GSR signals 
2. ANN-ECG-BP: the ANN was modeled to recognize ECG and BP signals 
3. ANN-GSR-BP: the ANN was modeled to recognize GSR and BP signals 

All the ANNs were implemented and tested using MATLAB. The MATLAB adapt 
function was used for training the ANN on an incremental basis. Each ANN was 
trained using the Levenberg-Marquardt algorithm for 1000 epochs or until the magni-
tude of the gradient for the mean squared error (MSE) was less than 10-5 during the 
validation phase. 

4 Results and Discussion 

The ANNs for signal recognition were trained and tested on the sensor signal data sets 
collected in [7] using 10-fold cross-validation process. The process was executed 20 
times to obtain the mean and standard deviation of the recognition rates for the differ-
ent types of signals. 

Results of the individual-independent ANNs for physiological signal classification 
are shown in Fig. 2. ANN-1s produced the best recognition rates for all the signals 
and the results were statistically significant according to the Student’s T-test 
(p < 0.001). 

 

 
(a) 

 
(b) 

Fig. 2. Recognition rates for the physiological signals from individual-independent ANN clas-
sifiers based on 10-fold cross-validation (a) ANN-10s – its recognition rates were similar to 
ANN-5s (b) ANN-1s – it produced optimal results (c) ANN-0.5s 

0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

Combined 
Accuracy 

ECG GSR BP 

R
ec

og
ni

tio
n 

R
at

e ANN-10s 

0.50
0.60
0.70
0.80
0.90
1.00

Combined 
Accuracy

ECG GSR BP

R
ec

og
ni

tio
n 

R
at

e ANN-1s



508 N. Sharma and T. Gedeon 

 

 
(c) 

Fig. 2. (Continued) 

The trend in the signal recognition rates for ANN-Ind-10s on each individual signal 
data set was statistically similar (p < 0.05) to the trend in the signal recognition rates 
for ANN-10s in that the GSR, ECG and BP signals had the highest, second highest 
and the lowest recognition rates respectively. The recognition rates for ANN-Ind-10s 
are provided in Fig. 3. Trends in the recognition rates for ANN-Ind-5s, ANN-Ind-1s 
and ANN-Ind-0.5s were similar to ANN-5s, ANN-1s and ANN-0.5s in the same way 
as well. 

 

 

Fig. 3. Recognition rates for the physiological signals for individuals from ANN classifiers 
based on 10-fold cross-validation for ANN-Ind-10s 

The recognition rates of the ANNs modeled on only two types of signals using the 
data provided to ANN-10s are provided in Table 1. The results show that ANN-ECG-
BP produced the lowest classification rates compared to ANN-ECG-GSR and ANN-
GSR-BP. The accuracy for ANN-ECG-BP was at least 0.27 lower than the other two 
ANNs. The ANN could not distinguish the ECG and BP signals as strongly as GSR  
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and the other types of signals. From the results, GSR signals were less similar to the 
other two types of signal so this explains why the GSR recognition rates were the 
highest for ANN-10s and with similar reasoning, it explains the trend in the recogni-
tion rates for the other types of signals. Further, the data provided to ANN-5s,  
ANN-1s and ANN-0.5s were provided to ANNs that modeled two types of signals to 
explain their trends in a similar fashion. 

Table 1. Signal recognition rates produced from ANN models classifying two types of signals 

ANN Accuracy ECG GSR BP 

ANN-ECG-GSR 0.99 1.00 0.99 - 
ANN-ECG-BP 0.68 0.73 - 0.62 
ANN-GSR-BP 0.95 - 0.96 0.95 

 
The recognition rates for ANN-10s-Corrupt, ANN-5s-Corrupt, ANN-1s-Corrupt 

and ANN-0.5s-Corrupt are shown in Fig. 4. Results show that the recognition rate for 
corrupted signals was the highest for ANN-10s-Corrupt compared to the other ANNs 
that recognized corrupted signals. Nevertheless, the ANN-1s-Corrupt produced the 
highest combined classification accuracy and the highest recognition rates for the 
other signals i.e. physiological signals just as ANN-1s did. 

 

 
(a) 

 
(b) 

Fig. 4. Recognition rates for the physiological signals and corrupted signals from individual-
independent ANN classifiers based on 10-fold cross-validation (a) ANN-10s-Corrupt (b) ANN-
5s-Corrupt (c) ANN-1s-Corrupt (d) ANN-0.5s-Corrupt 
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(c) 

 
(d) 

Fig. 4. (Continued) 

The results in Fig. 2 and Fig. 4 show that the best signal classification rates are 
achieved when signals segmented into one second time lengths are modeled. Signals 
that spanned 0.5 seconds did not have sufficient data in input tuples for ANNs to rec-
ognize patterns that distinguished one type of signal from the others as well as signals 
that spanned one second. ANNs that modeled signals which spanned more than one 
second learnt less general and poorer relationships between data in the signals for the 
time lengths and the signal class type. 

Further, the different topologies of the hidden layers of the ANNs did not show a 
statistical difference between the classification results according to the Student’s T-
test (p > 0.1). Future work could investigate optimizing the topology of the ANNs 
including investigating recurrent ANNs and time-delay ANNs for signal classifica-
tion. 

5 Conclusion and Future Work 

Different physiological signals were modeled and classified by individual-
independent ANNs and ANNs for a particular individual. Signals spanning various 
time lengths were modeled. Results showed that the highest accuracy values for phy-
siological signals without corrupted signal recognition were produced by the ANNs 
that modeled signals with a span of one second. However, corrupted signal recogni-
tion rates were the highest for ANNs that modeled signals spanning 10 seconds.  
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Future work can investigate developing an ANN that classifies signals using signals 
of different time lengths and produce classification rates that are highest for both phy-
siological signals and corrupted signals. Alternatively, it may be beneficial to develop 
a system that uses a sampling frequency recognizing corruption which is different to 
the best frequency for recognizing physiological signals. The latter would be better 
for cutting through the noise which is in some ways the converse of recognizing cor-
rupted signals. Further, the proposed classification system can be extended to model 
and recognize other types of physiological signals and applied to automatic online 
signal classification. 
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